## 编译环境
操作系统
* [x ] Windows 10
* [ ] macOS
* [ ] Linux
`若需勾选,请把[ ]改成[x]`
Tex发行版
* [ x] TexLive `年份`...
## 编译环境
操作系统
* [x ] Windows 10
* [ ] macOS
* [ ] Linux
`若需勾选,请把[ ]改成[x]`
Tex发行版
* [ x] TexLive `年份`
* [ ] MikTeX `版本号`
* [ ] CTeX
`若需勾选,请把[ ]改成[x]`
## 我的问题
向禹老师最近发布了一份张宇考研数学书籍latex模板,我很喜欢,就下载了源码试着编译了一下,结果出现下面的报错:
>Runaway argument?
\reserved@a :=widthof,heightof,depthof,totalheightof,maxof,minof\do {\ETC.
! File ended while scanning use of \@for.
\par
l.36 \RequirePackage
{mhsetup}[2017/03/31]
?
请问这是怎回事?应该怎样解决呢?
```
\documentclass[openany]{ctexbook}
\usepackage[centering,
top=2.5cm,bottom=2.5cm,right=2.4cm,left=2.4cm,
headsep=25pt,headheight=20pt]{geometry}
\usepackage{newtxtext,newtxmath}
\DeclareSymbolFont{CMlargesymbols}{OMX}{cmex}{m}{n}
\let\sumop\relax\let\prodop\relax
\DeclareMathSymbol{\sumop}{\mathop}{CMlargesymbols}{"50}
\DeclareMathSymbol{\prodop}{\mathop}{CMlargesymbols}{"51}
\usepackage{amsmath}
\allowdisplaybreaks
\usepackage{mathdots} % 提供副对角线\iddots命令
\usepackage{extarrows} % 提供长等于号
\usepackage{array,arydshln}
\newcommand\xline{\mathord{
\begin{tikzpicture}[baseline = (a.base)]
\node [inner sep=0pt] (a) {\phantom{N}};
\draw[dash pattern = on 1pt off 1pt](a.south)--(a.north);
\end{tikzpicture}
}
}
%--------------------------------------------
%----------------------------------------------------------定义选择题
\def\CA{A}
\def\CB{B}
\def\CC{C}
\def\CD{D}
%%------------------这么定义的目的是为了方便修改.
\newcommand{\kh}{(\rule[-2pt]{0.6cm}{0pt})}
\usepackage{ifthen}
\newlength{\la}
\newlength{\lb}
\newlength{\lc}
\newlength{\ld}
\newlength{\lhalf}
\newlength{\lquarter}
\newlength{\lmax}
\newcommand{\xx}[4]{\hfill\kh\\[.5pt]%
\settowidth{\la}{\CA.#1~~~}
\settowidth{\lb}{\CB.#2~~~}
\settowidth{\lc}{\CC.#3~~~}
\settowidth{\ld}{\CD.#4~~~}
\ifthenelse{\lengthtest{\la>\lb}}{\setlength{\lmax}{\la}}{\setlength{\lmax}{\lb}}
\ifthenelse{\lengthtest{\lc>\lmax}}{\setlength{\lmax}{\lc}}{}
\ifthenelse{\lengthtest{\ld>\lmax}}{\setlength{\lmax}{\ld}}{}
\setlength{\lhalf}{\dimexpr 0.5\linewidth-\parindent/2}
\setlength{\lquarter}{\dimexpr 0.25\linewidth-\parindent/4}
\ifthenelse{\lengthtest{\lmax>\lhalf}}{\indent \CA.#1 \\\indent \CB.#2 \\\indent \CC.#3 \\\indent \CD.#4}{
\ifthenelse{\lengthtest{\lmax>\lquarter}}{\hspace*{2em}\makebox[\lhalf][l]{\CA.#1~~~}%
\makebox[\lhalf][l]{\CB.#2~~~}\\
\indent\makebox[\lhalf][l]{\CC.#3~~~}%
\makebox[\lhalf][l]{\CD.#4~~~}}%
{\hspace*{2em}\makebox[\lquarter][l]{\CA.#1~~~}%
\makebox[\lquarter][l]{\CB.#2~~~}%
\makebox[\lquarter][l]{\CC.#3~~~}%
\makebox[\lquarter][l]{\CD.#4~~~}}}}
%--------------------------------------------------------------------------
%-----------------------------------------字体选项
\setCJKmainfont[BoldFont={方正黑体简体},ItalicFont={方正楷体简体},Mapping=fullwidth-stop]{方正书宋简体}
\defaultfontfeatures{Mapping=tex-text}
\XeTeXlinebreaklocale ”zh”
\XeTeXlinebreakskip = 0pt plus 1pt
%\setmainfont{Times New Roman}
%------------------------------------------------
\usepackage[perpage]{footmisc}
\usepackage[colorlinks=true,linkcolor=blue,linktoc=all,pdfauthor={向禹}]{hyperref}
%---------------------------------------定义常用符号
\let\bd\boldsymbol
\def\ft#1{\fcolorbox{cyan}{white}{\text{#1}}}
\def\VA{\bd A}
\def\VB{\bd B}
\def\VC{\bd C}
\def\VD{\bd D}
\def\VE{\bd E}
\def\VO{\bd O}
\def\VQ{\bd Q}
\def\VP{\bd P}
\def\ba{\bd \alpha}
\def\bb{\bd \beta}
\def\bg{\bd \gamma}
\def\vx{\bd x}
\def\vy{\bd y}
\def\TT{^{\mathrm T}}
\def\ba{\bd \alpha}
\def\jian#1{{\color{cyan}#1}}
\let\le\leqslant
\let\ge\geqslant
\usepackage[Symbol]{upgreek}
\renewcommand{\pi}{\uppi}%%%直立pi
\newcommand\kong[1][2]{\underline{\hspace{#1 cm}}}
\newcommand\bline{\textcolor{cyan}{\,\rule[0.5ex]{3mm}{0.6pt}}\,}
%--------------------------------------
\usepackage{pgfornament-han}
%------------------------------------------章节格式设置
\usepackage[most]{tcolorbox}
\usetikzlibrary{shapes.symbols,shapes.geometric}
\def \mybox#1{
\begin{tikzpicture}[baseline=(a.base)]
\node[inner ysep=0pt, inner xsep=2pt, cloud ,draw=cyan, aspect=4, cloud puffs=40,
fill=cyan!20] (a) {#1};
\end{tikzpicture}
}
\robustify{\mybox}
\newcommand\exercise{ \begin{center} \mybox{习题} \end{center}}
\newcommand\answer{ \begin{center} \mybox{解析} \end{center}}
\newcommand*\circled[2][circle]{\tikz[baseline=(char.base)]{
\node[draw,inner sep=0.1pt,minimum height=1em,#1] (char) {#2};}}
\newcommand*\scircled[2][circle]{\tikz[baseline=(char.base)]{
\node[draw,inner sep=0.1pt,minimum size=0.5em,#1] (char) {$\scriptstyle #2$};}}
\newcommand*\Circled[1]{\tikz[baseline=(char.base)]{
\node[draw,inner ysep=2pt,inner xsep=6pt, fill=cyan!20,rounded corners] (char) {#1};}}
\def\mytitle#1{
\begin{tikzpicture}[baseline=(a.base),remember picture]
\node(a){\color{blue}#1};
\fill[rounded corners,cyan!20] (a.north west)--(a.north east)--(a.south east)[sharp corners]--(a.south west)[bend right=40]to (a.north west)--cycle;
\draw[rounded corners,cyan] (a.north west)--(a.north east)--(a.south east)--(a.south west);
\node(a){\color{blue}#1};
\end{tikzpicture}
}
%------------------关于section编号的过度定制,只是为了和张宇的书一致,大家用的话不要用这个
\def\myshift#1{%
\ifcase\value{#1}%
0mm \or0.76mm \or0.05mm \or-0.05mm \or0.05mm \or0mm \or0mm \or-0.05mm
\fi}
\def\shift{\myshift{section}}
\def\mynumber#1{
\begin{tikzpicture}[baseline=(name.base),remember picture]
\node (name) {\color{blue} #1};
\node at ([yshift=\shift]name.center) {\pgfornamenthan[scale=0.1,color=cyan!40]{51}};
\end{tikzpicture}
}
\renewcommand\thechapter{\arabic{chapter}}
\renewcommand\thesubsection{\arabic{subsection}.}
\renewcommand\thesubsubsection{(\arabic{subsubsection})}
\setcounter{secnumdepth}{3}
\setcounter{tocdepth}{1}
\usepackage{tocloft}
\renewcommand\cftsecaftersnum{、} %% 目录section编号后面加一个顿号
\renewcommand\contentsname{\centerline{ \Huge\CJKfontspec{华文行楷}目 录 }}
\ctexset{
chapter={
name = {第,讲},
number = \arabic{chapter}
},
section = {
titleformat+ = \raggedright\mytitle,
nameformat = \kern-0.4cm\protect\mynumber,
aftername = \hskip-1.13em\relax,
number = \chinese{section}
},
subsection={
format = \Large\kern1.2em\color{cyan}\CJKfontspec{汉仪大宋简},
nameformat = \bfseries,
aftername = \;
},
subsubsection={
format = \bfseries\large\kern1.8em,
aftername = \,,
aftertitle = .
},
punct=kaiming
}
\usepackage{fancyhdr}
\usetikzlibrary{fadings}
\pagestyle{fancy}
\fancyhf{}
\fancyfoot[RO]{\tikz
{\node[draw,rounded corners,inner xsep=1em,scope fading = west,fill=cyan] {\thepage};
\node[rounded corners,inner xsep=1em] {\thepage};
}}
\fancyfoot[LE]{\tikz
{\node[draw,rounded corners,inner xsep=1em,scope fading = east,fill=cyan] {\thepage};
\node[rounded corners,inner xsep=1em] {\thepage};
}}
\fancyhead[RO]{\leftmark}
\fancyhead[LE]{\rightmark}
\fancyhead[RE,LO]{\href{yuxtech.github.io}{我的博客:yuxtech.github.io}}
\renewcommand\sectionmark[1]{%
\markright{\CTEXifname{\CTEXthesection、}{}#1}}
%-------------------------------------常用环境
\newcounter{prop}
\counterwithin{prop}{chapter}
\renewcommand\theprop{\arabic{prop}}
\newcommand{\propname}{性质}
\newenvironment{prop}{\par%
\refstepcounter{prop}%
\textbf{\propname\theprop}\label{prop\thechapter-\theprop}\quad
}{\par}
\newcounter{thm}
\counterwithin{thm}{chapter}
\renewcommand\thethm{\arabic{thm}}
\newcommand{\thmname}{定理}
\newenvironment{thm}{\par%
\refstepcounter{thm}%
\textbf{\thmname\thethm}\label{thm\thechapter-\thethm}\quad
}{\par}
\newcounter{example}
\counterwithin{example}{chapter}
\renewcommand\theexample{\thechapter.\arabic{example}}
\newcommand{\examplename}{例}
\newenvironment{example}{\par%
\refstepcounter{example}%
\Circled{\textbf{\examplename\theexample}\label{ex\thechapter-\arabic{example}}}
}{\par}
\newcounter{method}
\counterwithin{method}{example}
\renewcommand\themethod{方法\chinese{method}}
\def\method{\par\refstepcounter{method}\textbf{\themethod}
\label{ex\thechapter-\arabic{example}-\arabic{method}}\quad}
\usepackage{manfnt}
\newenvironment{note}{\parskip=0.5ex\par\noindent\begin{tcolorbox}[sharp corners,boxrule=0.4pt,colframe=cyan,left=0.65cm,breakable,enhanced]
【\textbf{注}】}
{\end{tcolorbox}\par}
\newenvironment{solution}
{\textcolor{cyan}{【\textbf{解}】}}
{\par}
\newenvironment{proof}
{\textcolor{cyan}{【\textbf{证}】}}
{\par}
\newenvironment{analysis}
{\textcolor{cyan}{【\textbf{分析}】}}
{\par}
%--------------------------------------------------------------
%---------------------------------------------定义习题环境与答案环境,建立习题与答案交叉引用,但是这里仅限于题目和答案在同一章,如果需要最后统一输出答案,输出第X章答案前,需要\setcounter{chapter}{X}。更好的方式是用我的博客上的方法 https://yuxtech.github.io/2020/04/15/QandA/
\newcounter{xiti}
\counterwithin{xiti}{chapter}
\renewcommand\thexiti{\thechapter.\arabic{xiti}}
\newenvironment{xiti}{\par%
\refstepcounter{xiti}%
\Circled{\hyperlink{ans\thechapter-\arabic{xiti}}{\textbf{\thexiti}}}
\hypertarget{xiti\thechapter-\arabic{xiti}}{}
}{\par}
\newcounter{ans}
\counterwithin{ans}{chapter}
\renewcommand\theans{\thechapter.\arabic{ans}}
\newenvironment{ans}{\par%
\refstepcounter{ans}%
\Circled{\hyperlink{xiti\thechapter-\arabic{ans}}{\textbf{\theans}}}
\hypertarget{ans\thechapter-\arabic{ans}}{}
}{\par}
\newcounter{amethod}
\counterwithin{amethod}{ans}
\renewcommand\theamethod{方法\chinese{amethod}}
\def\amethod{\refstepcounter{amethod}\textbf{\theamethod}
\label{ex\thechapter-\arabic{ans}-\arabic{amethod}}\quad}
\usepackage[inline]{enumitem}
\setlist{nosep}
%------------------------------英文分号和冒号转化为中文分号
\catcode`\;=13
\newcommand{;}{\text{;}}
\catcode`\:=13
\newcommand{:}{\text{:}}
%------------------------------修改公式编号
\usepackage{mathtools}
\newtagform{circle}{}{}
\usetagform{circle}
\renewcommand\theequation{\circled{\arabic{equation}}}
\DeclareMathOperator\tr{tr}
\begin{document}
\begin{titlepage}\definecolor{zy}{RGB}{78,81,125}
\begin{tikzpicture}[remember picture,overlay]
\fill[color=zy](current page.south east)rectangle (current page.north west);
\node[white,scale=0.3,anchor=north] (a) at ([shift={(2,-1.7)}]current page.north west){
\begin{tikzpicture}[line width=4pt,line cap=round]
\draw[rounded corners=0.1cm] (0,0) rectangle (2.2,3);
\draw[rounded corners=0.05cm] (0.4,1.6) -- (0.4, 0.5) -- (1.8,0.5) -- (1.8,1.6)
-- (1,1.6) -- (1,1);
\draw (0.4,2.1) -- (1.8,2.1) (0.4,2.5) -- (1.8,2.5);
\end{tikzpicture}
};
\node(b)[right=2mm,align=left,white,scale=1.5]at (a) {\scalebox{1}[1.3]{云图}\\[-3.4mm]\scalebox{0.5}{YUN\,TU}};
\node[right=6.5mm,scale=1.7,draw,rounded corners,fill=white]at(b){\phantom{2021版}};
\node[right=8mm,scale=1.5,draw,rounded corners,fill=white]at(b){2021版};
\node[text width=1em,anchor=north,white,scale=2,align=center,font=\CJKfontspec{汉仪大宋简}]
at([shift={(-1.5,-1.5)}]current page.north east)
{张\\[-2mm]宇\\[-2mm]数\\[-2mm]学\\[-2mm]教\\[-2mm]
育\\[-2mm]系\\[-2mm]列\\[-2mm]丛\\[-2mm]书\\[-2mm]\textbullet\\[-2mm] 二};
\node[anchor=north east] at ([shift={(-3,-1.5)}]current page.north east)
{\begin{tikzpicture}
\node(c)[draw=zy,align=center,font=\CJKfontspec{汉仪大宋简},scale=5,fill=white,inner xsep=2mm,
inner ysep=3mm]
{张\\[-2mm]宇\\[-2mm]线\\[-2mm]性\\[-2mm]代\\[-2mm]数\\[-2mm]
9\\[-2mm] 讲};
\node(b)[xscale=0.9,yscale=0.98]{\tikz\draw[color=zy,line width=3pt](c.south west)rectangle (c.north east);};
\node[xscale=0.85,yscale=0.97,anchor=center]at(b){\tikz\draw[color=zy,line width=1pt](c.south west)rectangle (c.north east);};
\node[left=2mm,anchor=south east,text=white,align=center,scale=2] at(c.south west)
{\tikz\draw[line width=1pt] circle(0.4\ccwd);\\主\\[-2mm]编\\张\\[-2mm]宇};
\end{tikzpicture}
};
\node[align=center,anchor=south west,text=white,font=\CJKfontspec{华文行楷},scale=3]
at ([shift={(2,1.7)}]current page.south west)
{高\\[-2mm]等\\[-2mm]教\\[-2mm]育\\[-2mm]出\\[-2mm]版\\[-2mm]社};
\end{tikzpicture}
\end{titlepage}
%\tableofcontents % 不想用下面的盒子风格输出目录的话就用原来的目录命令
\begin{tcolorbox}[enhanced,title=目\quad 录,sharp corners,breakable,
colframe=blue!50!black,colback=blue!10!white,colbacktitle=blue!5!yellow!10!white,
fonttitle=\bfseries,coltitle=black,attach boxed title to top center=
{yshift=-0.25mm-\tcboxedtitleheight/2,yshifttext=2mm-\tcboxedtitleheight/2},
boxed title style={boxrule=0.5mm,
frame code={ \path[tcb fill frame] ([xshift=-4mm]frame.west)
-- (frame.north west) -- (frame.north east) -- ([xshift=4mm]frame.east)
-- (frame.south east) -- (frame.south west) -- cycle; },
interior code={ \path[tcb fill interior] ([xshift=-2mm] interior.west)
-- (interior.north west) -- (interior.north east)
--([xshift=2mm] interior.east) -- (interior.south east) -- (interior.south west)
--cycle;} }]
\makeatletter
\@starttoc{toc}
\makeatother
\end{tcolorbox}
\setcounter{chapter}{1}
\chapter{余子式和代数余子式的计算\label{chap2}}
\mybox{知识结构}
\vskip\baselineskip
\[
\begin{cases}
\ft{行列式}\bline k_1A_{i1}+k_2A_{i2}+\cdots+k_nA_{in}=\smash[t]{\begin{vmatrix}
\ast\\
k_1\quad k_2\quad \cdots \quad k_n\\
\ast
\end{vmatrix}} \\
\ft{用矩阵}\bline |\VA|\ne0时, \VA^\ast=|\VA|\VA^{-1}\\
\ft{用特征值}\bline \begin{aligned}[t]
&\text{设$\VA$为3阶矩阵,当$\VA$可逆时,记其特征值为$\lambda_1,\lambda_2,\lambda_3$,}\\
&\quad \text{则}A_{11}+A_{22}+A_{33}=\lambda_2\lambda_3+\lambda_1\lambda_3+\lambda_1\lambda_2
\end{aligned}\\
\ft{求余子式的问题}\bline M_{ij}=(-1)^{i+j}A_{ij}
\end{cases}
\]
\section{用行列式}
\begin{flalign}
&\qquad\text{由}& a_{i1}A_{i1} + a_{i2}A_{i2}+\cdots+a_{in}A_{in} =
\begin{vmatrix}
\ast\\
a_{i1}\quad a_{i2} \quad \cdots \quad a_{in}\\
\ast
\end{vmatrix},&&\label{eq2.1}\\
\text{则}&& k_1A_{i1}+k_2A_{i2}+\cdots+k_nA_{in}=\begin{vmatrix}
\ast\\
k_1\quad k_2\quad \cdots \quad k_n\\
\ast
\end{vmatrix},&&\label{eq2.2}
\end{flalign}
其中$\ast$处表示元素不变, \ref{eq2.1}, \ref{eq2.2} 的区别仅仅在于第$i$行的元素$a_{i1},a_{i2},\cdots,a_{in}$换成了$k_1,k_2,\cdots,k_n$,这样,给出不同的系数$k_1,k_2,\cdots,k_n$,即得到了不同的行列式.而若要求$k_1M_{i1}+k_2M_{i2}+\cdots+k_nM_{in}$,只需用$M_{ij}=(-1)^{i+j}A_{ij}$化为关于$A_{ij}$的线性组合即可.
\jian{见例 \ref{ex2-1},例 \ref{ex2-2}.}
\section{用矩阵}
\textcolor{cyan}{(与第 \ref{chap3} 讲综合,考生需学习相关知识后再研读此点)}
当$|\VA|\ne0$时, $\VA^\ast=|\VA|\VA^{-1}$.
由于$\VA^\ast$由$A_{ij}$组成,求出$\VA^\ast$,即得到所有的$A_{ij}$,但要注意,此方法要求$|\VA|\ne0$,这是前提,也是一种限制.
\jian{见例 \ref{ex2-3},例 \ref{ex2-4}.}
\section{用特征值}
\textcolor{cyan}{(与第 \ref{chap7} 讲综合,考生需学习相关知识后再研读此点)}
设$\VA$为3阶矩阵,当$\VA$为可逆矩阵时,记其特征值为$\lambda_1,\lambda_2,\lambda_3$.则$\VA^{-1}$的特征值为$\lambda_1^{-1},\lambda_2^{-1},\lambda_3^{-1}$,且由$\VA^\ast=|\VA|\VA^{-1}=\lambda_1\lambda_2\lambda_3\VA^{-1}$,可知$\VA^\ast$的特征值为
\[
\lambda_1^\ast=\lambda_1\lambda_2\lambda_3 \cdot\lambda_1^{-1}=\lambda_2\lambda_3,
\lambda_2^\ast=\lambda_1\lambda_2\lambda_3 \cdot\lambda_2^{-1}=\lambda_1\lambda_3,
\lambda_3^\ast=\lambda_1\lambda_2\lambda_3 \cdot\lambda_3^{-1}=\lambda_1\lambda_2,
\]
\begin{flalign*}
\text{故由} & & \VA^\ast = \begin{bmatrix}
A_{11} & A_{21} & A_{31}\\
A_{12} & A_{22} & A_{32}\\
A_{13} & A_{23} & A_{33}
\end{bmatrix}&&
\end{flalign*}
知$A_{11}+A_{22}+A_{33}=\tr(\VA^\ast)=\lambda_1^\ast+\lambda_2^\ast+\lambda_3^\ast=\lambda_2\lambda_3
+\lambda_1\lambda_3+\lambda_1\lambda_2$.
这公式易记,好用,考生应熟知.
\jian{见例 \ref{ex2-5},例 \ref{ex2-6}.}
\section{求余子式的问题}
由于$M_{ij}=(-1)^{i+j}A_{ij}$,故先求出$A_{ij}$,乘以$(-1)^{i+j}$即可.
\begin{example}
设
\[
D_n = \begin{vmatrix}
1 & 2 & 3 & \cdots & n\\
1 & 2 & 0 & \cdots & 0\\
1 & 0 & 3 & \cdots & 0\\
\vdots & \vdots & \vdots & & \vdots\\
1 & 0 & 0 & \cdots & n
\end{vmatrix},
\]
求$A_{11}+A_{12}+\cdots +A_{1n}$.
\end{example}
\begin{solution}
\begin{align*}
A_{11}+A_{12}+\cdots+A_{1n} & =\begin{vmatrix}
1 & 1 & 1 & \cdots & 1\\
1 & 2 & 0 & \cdots & 0\\
1 & 0 & 3 & \cdots & 0\\
\vdots & \vdots & \vdots & & \vdots \\
1 & 0 & 0 & \cdots &n
\end{vmatrix}\\
& = \begin{vmatrix}
1-\sum_{i=2}^n\frac1i & 1 & 1 & \cdots & 1\\
0 & 2 & 0 & \cdots & 0\\
0 & 0 & 3 & \cdots & 0\\
\vdots & \vdots & \vdots & & \vdots \\
0 & 0 & 0 & \cdots &n
\end{vmatrix}\\
& = \Big( 1-\sum_{i=2}^n\frac1i \Big)\cdot n!.
\end{align*}
\end{solution}
\begin{example}
已知5阶行列式 $D_5=\begin{vmatrix}
1 & 2 & 3 & 4 & 5\\
2 & 2 & 2 & 1 & 1\\
3 & 1 & 2 & 4 & 5\\
1 & 1 & 1 & 2 & 2\\
4 & 3 & 1 & 5 & 0
\end{vmatrix} = 27$. 求$A_{41}+A_{42}+A_{43}$及$A_{44}+A_{45}$.
\end{example}
\begin{solution}
\hfil $(A_{41}+A_{42}+A_{43}) + 2(A_{44}+A_{45}) = D_5 =27$, \hfill
\begin{flalign*}
\text{又}&& 2(A_{41}+A_{42}+A_{43}) + (A_{44}+A_{45}) =
\begin{vmatrix}
1 & 2 & 3 & 4 & 5\\
2 & 2 & 2 & 1 & 1\\
3 & 1 & 2 & 4 & 5\\
2 & 2 & 2 & 1 & 1\\
4 & 3 & 1 & 5 & 0
\end{vmatrix} = 0, &&
\end{flalign*}
联立上式解得
\[ A_{41}+A_{42}+A_{43}=-9, A_{44}+A_{45}=18. \]
\end{solution}
\begin{example}
设 $n$ 阶行列式
\[
|\VA| = \begin{vmatrix}
2 & 0 & 0 & \cdots & 0\\
2 & 2 & 0 & \cdots & 0\\
2 & 2 & 2 & \cdots & 0\\
2 & 2 & 2 & \cdots & 0\\
2 & 2 & 2 & \cdots & 2
\end{vmatrix}_n.
\]
求\begin{enumerate*}[label=(\arabic*),itemjoin=\\]
\item $|\VA|$中所有元素$a_{ij}$的代数余子式$A_{ij}$之和$\sum_{i=1}^n\sum_{j=1}^nA_{ij}$;
\item $A_{11}+A_{22}+\cdots+A_{nn}$;
\item $A_{k1}+A_{k2}+\cdots+A_{kn}(k=1,2,\cdots,n)$.
\end{enumerate*}
\end{example}
\begin{solution}
\[
\VA = \begin{bmatrix}
2 & 0 & 0 & \cdots & 0\\
2 & 2 & 0 & \cdots & 0\\
2 & 2 & 2 & \cdots & 0\\
2 & 2 & 2 & \cdots & 0\\
2 & 2 & 2 & \cdots & 2
\end{bmatrix},
\]
$|\VA|=2^n\ne0$,故$\VA$可逆,且
\[ \VA^\ast=|\VA|\VA^{-1}=2^n\VA^{-1}. \]
由 $[\VA \xline\VE]\xlongrightarrow{\text{初等行变换}}[\VE \xline\VA^{-1}]$,有
\begin{align*}
[\VA \xline \VE] & = \left[
\begin{array}{@{}ccccc:ccccc@{}}
2 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 \\
2 & 2 & 0 & \cdots & 0 & 0 & 1 & 0 & \cdots & 0 \\
2 & 2 & 2 & \cdots & 0 & 0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \cdots & \vdots & \vdots & \vdots & & \cdots \\
2 & 2 & 2 & \cdots & 2 & 0 & 0 & 0 & \cdots & 1
\end{array}\right]\\
&\to \left[
\begin{array}{@{}ccccc:ccccc@{}}
1 & 0 & 0 & \cdots & 0 & \frac12 & 0& 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 & -\frac12 & \frac12 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & -\frac12 & \frac12 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \cdots & \vdots & \vdots & \vdots & & \cdots \\
0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & \cdots & \frac12
\end{array}
\right]
\end{align*}
即
\begin{align*}
\VA^\ast & = \begin{bmatrix}
A_{11} & A_{21} & \cdots & A_{n1}\\
A_{12} & A_{22} & \cdots & A_{n2}\\
\vdots & \vdots & & \vdots\\
A_{1n} & A_{2n} & \cdots & A_{nn}
\end{bmatrix}\\
& = 2^n\VA^{-1} = 2^n
\begin{bmatrix}
\frac12 & 0& 0 & \cdots & 0 & 0 \\
-\frac12 & \frac12 & 0 & \cdots & 0 & 0 \\
0 & -\frac12 & \frac12 & \cdots & 0 & 0\\
\vdots & \vdots & \vdots & & \cdots & \vdots \\
0 & 0 & 0 & \cdots & \frac12 & 0 \\
0 & 0 & 0 & \cdots & -\frac12 & \frac12
\end{bmatrix}.
\end{align*}
故有
\begin{enumerate*}[label=(\arabic*),itemjoin=\\]
\item $\sum_{i=1}^n\sum_{j=1}^nA_{ij}=2^n\big[n\cdot\frac12 + (n-1)\cdot
\big( -\frac12 \big)\big]=2^{n-1}$.
\item $\sum_{i=1}^nA_{ii}=2^n\cdot n\cdot\frac12 = 2^{n-1}\cdot n$.
\item 当$k=1,2,\cdots,n-1$时,
\end{enumerate*}
\[ A_{k1}+A_{k2}+\cdots+A_{kn} = 2^n\Big( \frac12-\frac12 \Big) = 0. \]
当$k=n$时, $A_{n1}+A_{n2}+\cdots+A_{nn}=2^n\cdot\frac12=2^{n-1}$.
\end{solution}
\begin{example}
已知3阶行列式$|\VA|$的元素$a_{ij}$均为实数,且$a_{ij}$不全为0.若
\[ a_{ij} = -A_{ij}(i,j=1,2,3), \]
其中$A_{ij}$是$a_{ij}$的代数余子式. 则$|\VA|=$\kong.
\end{example}
\begin{solution}
应填$-1$.
由$a_{ij}=-A_{ij}$有$\VA^\ast=-\VA\TT$. 于是
\[ \VA\VA^\ast = -\VA\VA\TT. \]
又$\VA\VA^\ast=|\VA|\VE$,故
\[ \VA\VA\TT = -|\VA|\VE. \]
两边取行列式得
\[ |\VA||\VA\TT| = -|\VA|^3,\,\text{即}\,|\VA|^2=-|\VA|^3, \]
也即
\begin{equation}\label{ex2.1}
|\VA|^2 (|\VA|+1) = 0. \tag{($\ast$)}
\end{equation}
由$a_{ij}$不全为0知,存在$a_{kj}\ne0$,将行列式$|\VA|$ 按第$k$行展开得
\begin{align*}
|\VA| & = a_{k1}A_{k1} + a_{k2}A_{k2} + a_{k3}A_{k3}\\
& = -a_{k1}^2 -a_{k2}^2-a_{k3}^2 < 0.
\end{align*}
故由 \eqref{ex2.1}, $|\VA|=-1$.
\end{solution}
\begin{example}
设$\VA=\begin{bmatrix}
a_{11} & 1 & a_{13}\\
a_{21} & 1 & a_{23}\\
a_{31} & 1 & a_{33}
\end{bmatrix}$,已知$\VA$的特征值是$2,1$,求$A_{11}A_{23}-A_{21}A_{13}$.
\end{example}
\begin{solution}
由题设
\begin{gather*}
|\VA| = 2\times 1\times (-1) = -2,\\
|\VA^\ast| = |\VA|^2 = 4.
\end{gather*}
由$\VA = \begin{bmatrix}
a_{11} & 1 & a_{13}\\
a_{21} & 1 & a_{23}\\
a_{31} & 1 & a_{33}
\end{bmatrix}$,有
\begin{align*}
& A_{11}+A_{21}+A_{31} = \begin{vmatrix}
1 & 1 & a_{13} \\ 1 & 1 & a_{23}\\ 1 & 1 & a_{33}
\end{vmatrix} = 0,\\
& A_{12}+A_{22}+A_{32} = \begin{vmatrix}
a_{11} & 1 & a_{13}\\ a_{21} & 1 & a_{23}\\ a_{31} & 1 & a_{33}
\end{vmatrix} = -2,\\
&A_{13}+A_{23}+A_{33} = \begin{vmatrix}
a_{11} & 1 & 1\\ a_{21} & 1 & 1 \\ a_{31} & 1 & 1
\end{vmatrix} = 0.
\end{align*}
故
\begin{align*}
|\VA^\ast| & = \begin{vmatrix}
A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33}
\end{vmatrix}
= \begin{vmatrix}
A_{11} & A_{21} & A_{11}+A_{21}+A_{31}\\
A_{12} & A_{22} & A_{12}+A_{22}+A_{32}\\
A_{13} & A_{23} & A_{13}+A_{23}+A_{33}
\end{vmatrix}\\
& = \begin{vmatrix}
A_{11} & A_{21} & 0 \\ A_{12} & A_{22} & -2 \\ A_{13} & A_{23} & 0
\end{vmatrix}
= - (-2) \begin{vmatrix}
A_{11} & A_{21} \\ A_{13} & A_{23}
\end{vmatrix}.
\end{align*}
于是
\[ A_{11}A_{23} - A_{21}A_{13} = 2. \]
\end{solution}
\begin{example}
已知3阶方阵$\VA$的特征值为$-1,2,3$. 求$\VA$的行列式$|\VA|$中元素$a_{11},a_{22},a_{33}$的代数余子式的和$A_{11}+A_{22}+A_{33}$.
\end{example}
\begin{solution}
\hfil $|\VA|=-1\times2\times3=-6\ne0$, \hfill
\noindent 故$\VA$可逆,且$\VA^\ast=|\VA|\VA^{-1}=-6\VA^{-1}.\VA^{-1}$的特征值为$-1,\frac12,\frac13,\VA^\ast=-\VA^{-1}$的3个特征值为
\begin{gather*}
\lambda_1^\ast = (-6)\times(-1)=6,\lambda_2^\ast=(-6)\times\frac12=-3,\\
\lambda_3^\ast = (-6)\times\frac13=-2.
\end{gather*}
\begin{flalign*}
\text{故} && A_{11}+A_{22}+A_{33} & =\tr(\VA^\ast) =\lambda_1^\ast +\lambda_2^\ast +\lambda_3^\ast\\
&& & = 6 - 3 - 2 =1. &&
\end{flalign*}
\end{solution}
\exercise
\begin{xiti}
设
\[
|\VA| = \begin{vmatrix}
2 & 1 & -3 & 5\\ 1 & 1 & 1 & 2 \\ 4 & 2 & 3 & 1 \\ 2 & 5 & 1 & 3
\end{vmatrix},
\]
计算$A_{41}+A_{42}+A_{43}+A_{44}$,其中$A_{ij}$是元素$a_{ij}(j=1,2,3,4)$ 的代数余子式.
\end{xiti}
\begin{xiti}
设
\[
|\VA| = \begin{vmatrix}
2 & 2 & 2 & 2 \\
a_{11} & a_{22} & a_{23} & a_{24}\\
a_{31} & a_{32} & a_{33} & a_{34}\\
a_{41} & a_{42} & a_{43} & a_{44}
\end{vmatrix} = a,
\]
计算$\sum_{i=1}^4\sum_{j=1}^4A_{ij}$.
\end{xiti}
\begin{xiti}
设$n$阶行列式
\[
D_n = \begin{vmatrix}
x & a & \cdots & a\\
a & x & \cdots & a\\
\vdots & \vdots & & \vdots\\
a & a & \cdots & x
\end{vmatrix},
\]
$A_{ij}$是$D_n$中元素$a_{ij}(i,j=1,2,\cdots,n)$的代数余子式,求$D_n$的全部代数余子式之和.
\end{xiti}
\begin{xiti}
证明:若行列式的某行元素全为$k(k\ne0)$,则这个行列式的全部代数余子式之和为该行列式值的$\frac1k$倍,即
$\sum_{i=1}^n\sum_{j=1}^nA_{ij}=\frac1k|\VA|$.
\end{xiti}
\begin{xiti}
设$\VA$是$n(n>2)$阶非零实矩阵, $A_{ij}$是$|\VA|$中元素$a_{ij}$的代数余子式,且
\[ a_{ij}=A_{ij}(i,j=1,2,\cdots,n). \]
证明$|\VA|=1$.
\end{xiti}
\answer
\begin{ans}
\begin{analysis}
$A_{4j}$是第4行元素$a_{4j}(j=1,2,3,4)$的代数余子式,其值只与第$1,2,3$行元素有关,与第4行元素无关.
\end{analysis}
\begin{solution}
将$|\VA|$中第4行元素依次换为$1,1,1,1$,并不改变$A_{4j}(j=1,2,3,4)$的大小,有
\begin{align*}
A_{41}+A_{42}+A_{43}+A_{44} & =1\cdot A_{41}+1\cdot A_{42}+1\cdot A_{43}+1\cdot A_{44}\\
& = \begin{vmatrix}
2 & 1 & -3 & 5\\ 1 & 1 & 1 & 2\\ 4 & 2 & 3 & 1\\ 1 & 1 & 1 & 1
\end{vmatrix}
\xlongequal{\scircled{2}-\scircled{4}}
\begin{vmatrix}
2 & 1 & -3 & 5\\ 0 & 0 & 0 & 1\\ 4 & 2 & 3 & 1\\ 1 & 1 & 1 & 1
\end{vmatrix}\\
& = (-1)^{2+4}\begin{vmatrix}
2 & 1 & -3 \\4 & 2 & 3\\ 1 & 1 & 1
\end{vmatrix}
\xlongequal[{[3]-[1]}]{[2]-[1]}
\begin{vmatrix}
2 & -1 & -5\\4 & -2 & -1\\1 & 0 & 0
\end{vmatrix}=1-10=-9.
\end{align*}
\end{solution}
\end{ans}
\begin{ans}
\begin{solution}
\begin{align*}
\sum_{i=1}^4\sum_{j=1}^4A_{ij} = {}& A_{11}+A_{12}+A_{13}+A_{14}+A_{22}+A_{23}+A_{24}\\
& A_{31}+A_{32}+A_{33}+A_{34}+A_{41}+A_{42}+A_{43}+A_{44}+\\
={}&\frac12(2A_{11}+2A_{12}+2A_{13}+2A_{14})
+\frac12(A_{21}+2A_{22}+2A_{23}+2A_{24})+\\
& \frac12(2A_{31}+2A_{32}+2A_{33}+2A_{34})
+\frac12(2A_{41}+2A_{42}+2A_{43}+2A_{44})\\
={}&\frac a2+0+0+0=\frac a2.
\end{align*}
\begin{note}
本题若命制成“设$|\VA|$的某行元素全为2,且$|\VA|=a$,计算$\sum_{i=1}^4\sum_{j=1}^4A_{ij}$”估计会增加一些难度,但解法和过程与本题完全一样,只不过要求读者多写一句“不妨设$|\VA|$的第一行元素全为2”即可.应对考试,读者一定要多从命题人的角度出发,想想看如何“变着花样”出题(例如习题 \hyperlink{xiti2-4}{2.4},知己知彼,才是科学的复习策略.
\end{note}
\end{solution}
\end{ans}
\begin{ans}
$\sum_{j=1}^nA_{1j} = \begin{vmatrix}
1 & 1 & \cdots & 1\\
a & x & \cdots & a\\
\vdots & \vdots & & \vdots\\
a & a & \cdots & x
\end{vmatrix}=
\begin{vmatrix}
1 & 1 & \cdots & 1\\
0 & x-a & \cdots & 0\\
\vdots & \vdots & & \vdots\\
0 & 0 & \cdots & x-a
\end{vmatrix}=(x-a)^{n-1},
$
\[
\sum_{j=1}^nA_{2j} = \begin{vmatrix}
x & a & a & \cdots & a\\
1 & 1 & 1 & \cdots & 1\\
a & a & x & \cdots & a\\
\vdots & \vdots & \vdots & & \vdots\\
a & a & a & \cdots & x
\end{vmatrix} =
\begin{vmatrix}
x-a & 0 & 0 & \cdots & 0\\
1 & 1 & 1 & \cdots & 1\\
0 & 0 & x-a & \cdots & 0\\
\vdots & \vdots & \vdots & & \vdots\\
0 & 0 & 0 & \cdots & x-a
\end{vmatrix} = (x-a)^{n-1}.
\]
同理, $\sum_{j=1}^nA_{ij}=(x-a)^{n-1},i=3,4,\cdots,n$. 故$\sum_{i=1}^n\sum_{j=1}^nA_{ij}=n(x-a)^{n-1}$.
\end{ans}
\begin{ans}
不失一般性,设
\[
|\VA|=\begin{vmatrix}
k & k & \cdots &k\\
a_{11} & a_{22} & \cdots &a_{2n}\\
\vdots & \vdots & &\vdots\\
a_{n1} & a_{n2} & \cdots &a_{nn}
\end{vmatrix} = k
\begin{vmatrix}
1 & 1 & \cdots & 1\\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & &\vdots\\
a_{n1} & a_{n2} & \cdots &a_{nn}
\end{vmatrix} = k\sum_{j=1}^nA_{1j},
\]
且$\sum_{j=1}^nA_{ij}=0,i=2,3,\cdots,n$. 故$\sum_{i=1}^n\sum_{j=1}^nA_{ij}=\frac1k|\VA|$.
\end{ans}
\begin{ans}
\begin{proof}
由于$\VA\ne\VO$,不妨设$a_{11}\ne0$,则
\begin{gather*}
|\VA| = \sum_{j=1}^na_{1j}A_{1j} = \sum_{j=1}^na_{1j}^2 >0 (A_{ij}=a_{ij},i,j=1,2,\cdots,n).\\
\begin{aligned}
\begin{bmatrix}
|\VA| & 0 & \cdots & 0\\
0 & |\VA| & \cdots & 0\\
\vdots & \vdots & & \vdots\\
0 & 0 & \cdots & |\VA|
\end{bmatrix} & =
\begin{bmatrix}
a_{11} & a_{12} & \cdots &a_{1n}\\
a_{11} & a_{22} & \cdots &a_{2n}\\
\vdots & \vdots & &\vdots\\
a_{n1} & a_{n2} & \cdots &a_{nn}
\end{bmatrix}
\begin{bmatrix}
A_{11} & A_{21} & \cdots &A_{n1}\\
A_{12} & A_{22} & \cdots &A_{n2}\\
\vdots & \vdots & &\vdots\\
A_{1n} & A_{2n} & \cdots &A_{nn}
\end{bmatrix}\\
& = \begin{bmatrix}
a_{11} & a_{12} & \cdots &a_{1n}\\
a_{11} & a_{22} & \cdots &a_{2n}\\
\vdots & \vdots & &\vdots\\
a_{n1} & a_{n2} & \cdots &a_{nn}
\end{bmatrix}
\begin{bmatrix}
a_{11} & a_{21} & \cdots &a_{n1}\\
a_{12} & a_{22} & \cdots &a_{n2}\\
\vdots & \vdots & &\vdots\\
a_{1n} & a_{2n} & \cdots &a_{nn}
\end{bmatrix} = \VA\VA\TT,
\end{aligned}
\end{gather*}
两边取行列式,得
\[
\begin{vmatrix}
|\VA| & 0 & \cdots & 0\\
0 & |\VA| & \cdots & 0\\
\vdots & \vdots & & \vdots\\
0 & 0 & \cdots & |\VA|
\end{vmatrix} = |\VA|^n = |\VA\VA\TT|=|\VA|^2,
\]
故$|\VA|^2(|\VA|^{n-2}-1)=0$,又$|\VA|>0$,则$|\VA|^{n-2}=1$,得$|\VA|=1$ ($\VA$是实矩阵, $|\VA|$ 是实数,且$|\VA|>0$,舍去$-1$).
\end{proof}
\end{ans}
\end{document}
```
一周热门 更多>