提问于:
浏览数:
2264
\bibliographystyle{unsrt}
%\bibliographystyle{alpha} % plain, unsrt, abbrv, alpha, siam, acm, apalike
\begin{thebibliography}{99}
\bibitem{acosta_numerical_2019}
G. Acosta and F. Bersetche.
\newblock Numerical approximations for a fully fractional {Allen}-{Cahn}
equation.
\newblock {\em arXiv:1903.08964 [math]}
\newblock arXiv: 1903.08964, 2019.
\bibitem{allen_microscopic_1979}
S.~M. Allen and J.~W. Cahn.
\newblock A microscopic theory for antiphase boundary motion and its
application to antiphase domain coarsening.
\newblock {\em Acta Metall. Mater.}, 27:1085--1095, 1979.
\bibitem{oldham_k._b._fractional_1974}
Oldham~K. B. and Spanier J.
\newblock { The {Fractional} {Calculus}}.
\newblock {\em Academic Press}, New York, 1974.
\bibitem{elliott_global_1993}
C.~M. Elliott and A.~M. Stuart.
\newblock The {Global} {Dynamics} of {Discrete} {Semilinear} {Parabolic}
{Equations}.
\newblock {\em SIAM J. Numer. Anal.}, 30(6):1622--1663, 1993.
\bibitem{feng_uniquely_2018}
Wenqiang Feng, Zhen Guan, John Lowengrub, Cheng Wang, Steven~M. Wise, and Ying
Chen.
\newblock A {Uniquely} {Solvable}, {Energy} {Stable} {Numerical} {Scheme} for
the {Functionalized} {Cahn}–{Hilliard} {Equation} and {Its} {Convergence}
{Analysis}.
\newblock {\em J. Sci. Comput.}, 76(3):1938--1967,
2018.
\end{thebibliography}