``` \documentclass{article} \usepackage{subfiles} \usepackage{tikz} \usetikzlibrary{positioning} \usetikzlibrary{positioning,shapes} \tikzset{special/.style={fill=cyan,ellipse}} \usepackage[natbibapa]{apacite} \bibliographystyle{apacite} % From https://en.wikibooks.org/wiki/LaTeX/Modular_Documents#Subfiles_and_bibtex % To get citations working in both the main and sub files \def\biblio{\bibliography{ref}} \begin{document} \def\biblio{} This is the main file!! \subfile{Chap1/Chap1} \newpage \bibliography{ref} \end{document} ```

1 回答1

0
``` \date{} \begin{document} \begin{multicols}{3} \subparagraph{created by wth}\label{header-c7} \subparagraph{cause}\label{header-c7} Truncation:计算量有关 Round-off:bit数相关 \subparagraph{不动点法}\label{header-c23} 收敛的充分条件:{[}a,b{]}内所有x满足\textbar{}g'(x)\textbar{} \textless{} k, (0 \textless{} k \textless{} 1) 收敛速度: \( |p_{n+1} - p_n| <= k * |p_n - p_{n-1}|\) , k越小越快 \subparagraph{牛顿法}\label{header-c30} 用泰勒展开的前两项作为函数近似,求该近似函数的零点,在零点处再求函数近似,迭代。 \(p \approx p_0 - \frac{f(p_0)}{f'(p_0)}\) 牛顿法的k在p点处是0,所以收敛非常快 \subparagraph{迭代法误差分析}\label{header-c38} \(lim \frac{p_{n+1} - p}{|p_n - p|^a} = \lambda\) pn收敛于p, a越大,收敛速度越快 a = 1, linearly convergent a = 2, quadratically convergent \( g'(p) \neq 0\) 则最少是 linear convergent,拉格朗日中值定理可退 \( g'(p) = 0\) 时(如牛顿法) g不等于0的最高阶导数阶数a 牛顿法是二阶收敛的 \subparagraph{quadratica newtom method}\label{header-c54} 有重根(几重根都可以)的时候令 \( \mu(x) = \frac{f(x)}{f'(x)} \) 然后再做牛顿法 \( g(x) = x - \frac{\mu(x)}{\mu'(x)} \) \subparagraph{Aitken's Method (Steffensen's Method)}\label{header-c61} 原理 \(p_{n+2} = p_n - \frac{( \Delta p_n )^2}{ \Delta ^ 2 p_n }\) \( p_1 = g(p_0),\ p2=g(p_1)\) \(p=p_0-\frac{(p_1-p_0)^2}{(p_2-2*p_1+p_0)}\) \(p_0=p\) ```

你的回答

请登录后回答

你的回答将会帮助更多人,请务必认真回答问题。