如下图,C 点是以「交点」的方式求得的,并不知其确切坐标,欲作原点(0,0) 关于 点 C 对称的点Q,也即是在 x 轴上找一点Q,令OC=CQ,求问如何引用『线短OC之长』?
![](https...
如下图,C 点是以「交点」的方式求得的,并不知其确切坐标,欲作原点(0,0) 关于 点 C 对称的点Q,也即是在 x 轴上找一点Q,令OC=CQ,求问如何引用『线短OC之长』?
![](https://wenda.latexstudio.net/data/attach/210111/eTvz2Rsn.png)
```lua
$$\begin{tikzpicture}[scale=0.7]
\draw[-latex] (-7,0) -- (12,0) node [above]{$x$};
\draw[-latex] (0,-7) -- (0,8) node [right]{$y$};
\draw plot[samples=400,domain=0:15](\x,{2*sqrt(\x)}) ;
\draw[name path=a,yscale=-1] plot[samples=400,domain=0:10](\x,{2*sqrt(\x)}) node[right]{$y^2=4{x}$};
\coordinate(A) at(1,2);
\coordinate(B) at(14.66,7.66);
\draw[name path=f](A)--(B);
\coordinate (Q) at ($(A)!-7cm!90:(B)$);
\draw [name path=b](Q)--(A);
\draw[name path=o] (-7,0) -- (12,0) ;
\draw[name path=t] (0,-7) -- (0,8);
\fill [name intersections={of=a and b, by={D}}] (D) circle (4pt) node at (3.6,-3) {$D$};
\draw[name path=c,domain=-7:4] plot(\x,{(-2*\x-6.69)/3.66});
\draw[name path=d,domain=-7:15] plot(\x,{(2*\x+29.31)/7.66}) ;
\fill [name intersections={of=c and d, by={P}}] (P) circle (4pt) node[above] {$P$};
\fill [name intersections={of=o and b, by={C}}] (C) circle (4pt) node at (2,.6) {$C$};
\fill (A) circle (4pt) node at (1,2.5) {$A$};
\fill (B) circle (4pt) node at (14,8) {$B$};
\fill (0,0) circle (4pt) node at (-0.5,-0.5) {$O$};
\draw[name path=g](P)--(A);
\coordinate (W) at ($(A)!-5.5cm!(B)$);
\draw [name path=w](A)--(W);
\fill [name intersections={of=o and w, by={I}}] (I) circle (4pt) node[below] {$I$};
\end{tikzpicture}$$
```
一周热门 更多>